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For an integer k ~ L let t:= (I,)', be a non-decreasing real sequence with

1".I"k' and let N'.k.'(.X):=(llitl ..... I,,,I-II,, ... ,I,,k II)(·--,)k. I. It is well
known that N,.k., are B-splines of order k for the knot sequence t. Suppose that
f.l. := (;1,)' is a sequence of integers and f i := I"r Then N U . T allows the represen
tation N j.k.T= L,fJj.k.T.t(i)N,.k.t. The coefficient sequence fi,.k.T.t is called a dis
crcte B-spline with ~ and with respect to t. This paper develops several properties of
discrete B-splines and proves. in particular, the total positivity of the discrete spline
collocation matrix_

Discrete polynomial splines on a uniform mesh were first introduced by
Mangasarian and Schumaker [9 j, who defined them as solutions of certain
discrete minimization problems. Later on, Schumaker [II [ described
constructive properties of these discrete polynomial splines. Lyche, in his
thesis [81, translated many theorems on continuous polynomial splines into
discrete analogues. In contrast, de Boor [21 viewed discrete B-splines as B
spline coefficients of continuous splines, which allows consideration of
discrete splines for arbitrary meshes. In my opinion, de Boor's point of view
has some advantages (see the postscripts). Thus, we shall develop de Boor's
idea in this paper and, in particular, prove the total positivity of the discrete
B-spline collocation matrix.

Let us begin with some notations. As usual, denotes the set of integers,
the set of real numbers, and A B the set of functions on B into A. Thus,

is the set of real bi-infinite sequences. For i, j E Z, we mean by Ii, j I the set
jnE7'; i<-n<-j}.

For k E i, k> 1, let t:= (I;)': be a non-decreasing real sequence with
I; < I; , k' It is well-known that
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are B-splines of order k for the knot sequence t. Here,

denotes the rth divided difference of the function f at the points Po ,... , Pr , and
(.X'-t)k} I :=(maxjO,x-t\)k I.

Suppose now that {J1J~ is an increasing sequence of integers. For
T;:= t"i' consider the B-splines associated with the knot sequence
't:=(r)'A

Since N;,k" is also a spline with knots t, it can be represented as a linear
combination of the N;.k,t'S, by the Curry-Schoenberg theorem (see 14:
p. 113 J):

N .. =\'fJ· (u)N./,A.T. __ .I,k,T..t, I.k.to

Following de Boor 121, we make the following definition:

(I)

DEFINITION 1. The coefficient sequence fJj,k,t,( E F in (I) is called a
discrete B-spline with knots 't and with respect to t.

It is known from \2\ that

/lj,k,,)t) = (t;lk-t;)[t;, ... ,t;+kl(- -t;}\)\ , .. (. -t;'k \),. (2)

When k = 1. (2) reads

(2')

where

=0

if I> i

if I ~ i.

If't and t are clear from the context, fJj,k",t will be abbreviated to /Jj,k' or
even to fJi ,

Remark 1. Definition I uses a different normalization than do (5.1 Oa)
and (5,IOb) of [2\, Clearly.

where (X,(i) is in the sense of (5.10b) of 121.
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Let us now establish some basic properties of discrete B-splines.

LEMMA 1 (Marsden's Identity),

\" fJ· = 1"---' ilk. T,t •

j

13

(3 )

Proof It follows from Marsden's Identity (see [2)) for continuous B
splines and (1) that

\ ~ N - 1 - \" N - Y (\~ fJ (i) N )
.0....:- i.k,t - - ~ j.k,t - ~ ~ 1.k,t.t i.k.t

I 1 1 I .

-,' (\' fJ (')) N- i 7 i,k,t,t I i.k,t"

Since Ni,k,T (i E I) are linearly independent, (3) must hold.

LEMMA 2 (Composition formula), Let t := (tJ:oc be a non-decreasing
real sequence with t i < t i +k' P a subsequence of t and t a subsequence of p.
Then

\'
fJi,k.T,t =~ fJj,k,T'P(l) fJ/,k,p,t·

/

Proof By (1),

\"fJ· (i)N =N. =\'/3. (I)N
~ J.k,T.t I,k,l J,k,T ~ J,k,T,p {,k,p

i {

= \ ' fJ· (I) (\' fJ (i) N )7 1,k,T,p i I,k,p,t I,k,t

= \' (\' fJ· (/)fJ (i)) Ni I 1,k,T,p l.k,p,t I,k,t·

(4 )

Since N u .t (i E I) are linearly independent, (4) follows from the above
equality.

LEMMA 3 (Recurrence relation). For k> 2,

(5)

640/39/1 2
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Proof Note that for any t E t,

(r-fi,I)' ... (r--f iek 2L(r--fi~k-l)i

= l(r-t I41 )1 ... (r f llk 2)+I(r tik I)'

Applying Leibniz's formula to the above product we obtain

i it.

= (Ti ' k .. r j ) \. ~ Ir i ..... r r I(. - fl· I). ... (.- t I ,k ,)
r j

x Irr .... ,rjHI(- ~titk-I)I

=((Tj,k rj)lrj rj,kl)(· ti"I)' ... (. --t i . k ,) (r l k~t,,, I)

tlrj+k rj)ITj, ,rllk 11(· ti,I)' · .. (·-ti'k 2),

=(rjlk--fj.k l)jITi.I ...·.rj'kl~ITj ....,ri,k l]~

(. -' f i I I), ... (- ~ f i' k 2),

+ (rj+k~rj)lri' .. ·,riH IIi- ·-tlf 1)1 ... (. ~ti'k Jt

={(rjtk-fitk I)!rjl I, .. ·,rj+kl + (tid J~rj)ITj,.... rj'k Iii

(·-fiIIL ... (.-f i + k 2)

This proves Lemma 3.

LEMMA 4. For a fixed s E fl. let

:= l-·

if 1< s

it' l)-s.

PI := f'l and p := (PI)'":. . In ofher words, p is formed by dropping an enfry
from t. Then

Pu.p,lO = 0

Pi-l,k,P,li))- 0

lii.k.PotU))- 0

for I < i ~ 1 or l > i;

with sfricf inequality iff t i , k > t5 ;

with stricf inequality iff t i < i,.

(6a)

(6b)

(6c)

Proof If t,)- {s' then N',k,P = N I + I.k.t. and it follows that

for all i. l.
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In the same way, for f ltk + I:;;' f"

IS

for all i, I.

Now (6a) is easily derived from what has been proved. Moreover, when f/ <
l, < fl. k. I' we have

NI.k.p = fJl.k.p.t(l)NI.k.t + fJl.k,P.t(l + I )N/+ I.k.t·

It is known that N,.k.P has the same sign as fJl.k.P.t(l) in (1/,1/ + 1') for
sufficiently small e > a (see 12 j), so

fJu .P. tU) > 0

similarly

fJl.k'P.t(l + I) > 0

Summarizing these facts we get (6b) and (6c).

LEMMA 5. Suppose ~ E :Z J and I j = tuJor all j E l. Then

fJ}.k.t.t(i) ) 0

wifh equality if and only if one of the following four cases occurs:

(7a)

(7b)

1;+ k > lUi" ~

liTk = lUi.' and

(7c)

maxlpl/i+k_P=I;~d>maxjql/ulk,,=lu1 ,1· (7d)

Proof We use the linear functional Ai given by the rule:

k-I

AJ:= ~ (_I)k-I.-r'P(k '-r)(~)D'f(~),

r::-O

all f (8)

where 'P(/):= (fit 1 - f) .. · (ti + k+ I - f)/(k - I)! and f; < ~ < f ilk . By the de
Boor-Fix Theorem (see [4, pp. 116-118 J),

(9)

In case (7a), choose ~ so that f i < ~ < f". Then
1
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Hence (8) and (9) yield

RONG-QING JIA

pj,k,t,t(i) = A;Nj,k,t = O.

In case (7b) write c:=max{p!t;+p=t;f, d:=max{qjt"i+q=t"J Then
d ~ c - 1 and

N k (t.+) = N' k (t.+) = ... = N(kk- d
-

2 )(t.+) = O.J • •'t I. ). ,'t I }. ,T I

'l'(t;+) = ... = 'l'«("-II(t;+)=O.

Taking ~ = t; + in (8) and substituting these values into (8), we obtain

Pj,k,t.t(i) = AINi,k,t = O.

Cases (7c) and (7d) can be treated in the same way,
Now suppose that none of (7a~(7d) is true. We want to show

Pj,k.t,t(i) > O. Let

and IE I := the cardinality of E.

We shall proceed by induction of j E I. The case IE I= 0 is trivial. The case
IE I = 1 is reduced to Lemma 4. Assume now that our statement is true for
lEI < n. We want to prove our statement is also true for lEI = n. Take any
sEE. Let p be defined as in Lemma 4; that is, VI = 1 for 1< s, v, = 1+ I for
1~ s and PI := t"I' By Lemmas 2 and 4,

fJ (i) = \ ' p. (I) fJ (i)1.k,t.t _ j,k,t,p I.k,p,t
I

= pj,k.t,P(i - 1) Pi .. I,k,P,t(i) + Pj,k,t,p(i) fJ;,k,P,tCi)·

All terms that appear in the above equality are nonnegative. It seems
appropriate to treat the following three possible subcases individually.

(i) ti~ts' In this case, P; l,k.p.t(i»O by (6b). We need to show
pj.k,t,p(i-l»O. If i-l~s, then vl_l=i and VI I"k=i+k: so
Pi,k.t,p(i - 1) > 0 by induction hypohesis. Assume now i-I < s. If t l > t

Uj
'

thent; I>t"or
I

and max{plt;+p_l=t;_lf=O~max{qlt" =t"J
.... I .~ (/ '" J

Hence Pj,k,t,p(i - 1) > 0 by induction hypothesis again. Finally, suppose
ti = t,,/ Then t i ~ ts ~ t"i implies t, = t i . Thus flj < i; for otherwise flj ~ i and
i ~ s would imply

max{p I t i +p= t;f > max{q I I" = If,
,.,. f '(} P- J
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a contradiction. In conclusion,

max{p IPi-I +p = Pi- d = max{p It i + p = td ::;; max{q It" = tIl },
I I-'q

17

so that fJj,k,t,p(i - I) > O.

(ii) t H k ::;; t,. This case can be treated in the same way as (i) is,

(iii) ti < ts < ti + k. Lemma 4 tells us that both fJi-l,k,p,t(i) and fJu,p,lO
are positive in this case, Thus we need to show that at least one of

fJj,k,t,p(i - 1) and fJj,k,t,P(i) is positive. If either t i > t"i or ti +k < t"ilk' then
this holds by the observation made in (i), Next, suppose t i = t

H
, ti k = t

"I Uj.J..

and either

or

then one can easily get fJj,k,t,p(i - 1) >a or fJj,k,t,P(i) > 0, using the same
argument as in (i), The remaining case to be discussed is

max {pit, = t} = max {q I t = t }
1 P I u,.. (I I

and

Let c := maxi pi ti +p = td, e := max{ pi t itk q = t i t d, Then

hence

fJj+c+l>i+c, fJj+ k - e I < i + k - e;

fJj + k- e - 1- fJj H + I ::;; (i + k - e - I) - (i + c + I)

= (j + k - e - 1) - (j + c + I),

This means s E ~, which contradicts the choice of s. Lemma 5 is proved.
We are now in a position to prove our main result.

THEOREM 1. Let t := (1;)''-00 be a non-decreasing real sequence with ti <
titk , all k, (PJ":CfJ an increasing integer sequence, T j := t"i and let
't := (Tj)":00' Let (fJj)~ _ 00 be the sequence of discrete B-splines of order k
with the knot sequence 't and with respect to 1. Let



18 RONG-QING JIA

be a finite increasing subsequence of integers. and set

r'm'

Then for eve,y subsequence q I < ... < q""

det U [ i I i m .1) 0
lql , q", .

with strict inequality iff both of the following conditions are satisfied:

(i) #'I,U,) > Ofor all I' = 1,2,.... 11I.

(ii) If there is some s E I-l such that Ii, = tJor sOllie r. then

i,. d, < i,. d,o.

where

Proof Write

( 10)

If #",(ir) = 0 for some r. then /l",U,) = 0 for all I, j. with I ~ I"" r ~ j ~ 111, by
Lemma 5. Thus columns 1', ... , m of A are linearly dependent and det A = O.
Without loss of generality we may assume further that both the first super
diagonal and subdiagonal of A are positive.

and /i'I,Ur I) > 0, r -" 2...., m. ( II )

Otherwise, we would have, say. #q" ,)i,) = 0 for some r. It would follow that

#q,(it) = 0 for any I, j with I ~ I ~ r < j ~ 111. Thus

det A = det U I i I' i,] . det U I i, I· .... i", ).
lql q, q'.I ..·.. q'"

where

det U Iii"'" i, I
lql .. ··,q,J

and I
i,. I i", j

q" I· q",

are lower order determinants of the same form. If III = I. then A is a I X I
matrix and det A > O. trivially. Thus if we use induction on m. then det A
would already have the property declared in Theorem I. From now on we
always assume (II) to hold (cf. 131).
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We point out that (I 1) yields
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r= L... ,m. (12)

The only thing we have to prove is (JqJi] - 1) > 0 and (JqmUm + I) > 0, while
in all the other cases this is a direct consequence of (11). Since (J,,,U I) > O.

i , ?:f.1q" hence i]-I?:f.1q,-I?:f.1q,: then ,uq,.kU,-I»O, obviously. If

Ii, _I = ljJ.q, and li, __ 1 < Ii" then

max;plli l 1=lil 1+[J~=O~max{qllu =Ii d·
1/\ -'I I

So we also have (Jq U1- I) > O. The last possible case is Ii 1= Iu = I .
1 I . [II (I

Then

maxlp!lil __ I=."=li, "[J~=I tmaxjp!lil="'=li"r,1

~ I + maxlq 11jJ. = ... = lu ? ~ maxjq II" = ... = lu I:
1./-;' 'n ·rt· (II III '/

therefore (JqlUI - I) > O. Similarly, (J1/mUm + I) > O.
As in Lemma 5, let

We will proceed by induction on lEI. If lEI = 0, then A is a diagonal matrix,
so the proof is trivial. Suppose now that, for 1 E i < 11, our theorem is proved,
and we want to show the conclusion of Theorem I also holds for: E = 11.

We have proved that if (i) is violated, then det A = O. Suppose now that

(ii) does not hold. Then there is some sEt such that Ii, = Is and ir _ d , =

ir - dr. Form p by dropping s from t as we did in Lemma 4. Let

V:= (jJI.k,p,t(ir ))! >",,-111

u(/]~/"'·1.11Im; J.. I

W'- (fJQ,.k'1'P(l»U'/I,.i"-u q ,,,' k I'
1< r<m

Then A = VW by Lemma 2, Further, the Cauchy-Binet formula (see 161)
gives

detA = \'
i I 1,<···

( 13)

Since I = I and I = 1- dr' we have
I,." II' (/,.'/ I,

and
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by Lemma 4. Furthermore,
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Consider the following matrix with dr + I rows:

l·.. fJ (i)I,--d, I.~.P.1 r -d,

... fJi, d, I.k.p.t(lr)

fJ i, - d,. k.p. t( i r --- d,)

All its entries except those in columns i r - d,., ... , i r - I are zero. Thus the
rank of this matrix is no bigger than dr. Hence the dr + I rows of this matrix
are linearly dependent. This shows that the rows r - dr' r- dr + I,..., r of the
matrix A are linearly dependent. Thus the rows r - dr. r - dr + L .., r of
each

v l_ ii' i2 , .. ·, i", I
~I' ~2 .... , ~'" J

are linearly dependent, so that

for all ~I < ~2 < ... < ~",. (14)

Therefore det A = 0 by (13).
Suppose now that both conditions (i) and (ii) are satisfied. We want to

show det A > O. We shall argue by induction on I E I again. Take sEE. Form
v and p as we did in Lemma 4. Let V and W have the same meaning as
above. By induction hypothesis and Lemma 4, all products that appear on
the right-hand side of (13) are nonnegative. Let r be the least integer such
that f i , ~ f,. Then f i , 1< f,. There are two possibilities to be discussed:

(a) i r I < ir - I.
In this case, we choose

:= i"

for h ~ r

for h < r.

Then ~ I < ~2 < ... < ~",. By Lemma 4 and the choice of the (s.

h = J. 2..... m.
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In addition, if h < r, then we have vlh=ih and Vlh+k=ih+k or ih+k+I' Thus
(12) together with Lemma 5 tells us that

Similarly, if h? r, then we have vlh = ih - I and vlh +
k
= ih+k - I or ih+k so

the above inequality also holds. By induction hypothesis we assert that

and

By (13), (14) and (14a) we have

detUf i 1,i2,,,.,im ]>O.
lql' Q2'"'' qm J

(fJ) i r - 1 = i r - l' In this case, condition (ii) gives

where dr := k - max{p I t;+p = t;J There exists an integer c, I~;; c ~ dr'
such that ir (e-I) = ir - (c- I) but ire < ir - c. Thus

Let

ir e < ir - c = (ir - c + 1) - I = ire. I - I.

for h? r - c + I

:=i" for h~r-c.

(15 )

( 16)

From (15) and (16) we see that ~l < ~2 < ... < ~m' Now Lemma 4 yields
that

d Vl il'i,,, ... imJet - > O.
~I' ~2'"'' ~m

Using the same argument as in (a), we get

This proves our theorem.

Remark 2. If t is a strictly increasing sequence, Lemma 5 can be stated
as follows:
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with strict inequality iff 1.1 <Ii' I't k ~ Ii k' Furthermore. In Theorem I.
condition (ii) is automatically fulfilled as long as (i) holds.

Remark 3. It is interesting that the Schoenberg-Whitney Theorem (see
[1Oj) can be derived from our Theorem l. Indeed. let 1: = (,J"! be a

nondecreasing knot sequence. 'I < '2 < .. < 'Ill' and let t be a knot sequence
formed by adding some knots to 1: so that t has exactly k multiples at each

'i' i= l. 2..... 111. Then

according to (I). Now one could easily see that the Schoenberg-Whitney
Theorem is a consequence of Theorem 1.

POSTSCRIP'T

This work was done in July 1980. Later I became aware of the three
related papers II. 5,7\. Essentially, whether explicitly or implicitly. these
three papers view discrete B-splines as the coefficient sequences associated
with the expansion of continuous polynomial splines in B-splines. This is just

de Boor's point of view (see 12\). In II \' the author provided an algorithm
for further subdivision of a knot sequence. The basic idea of [I [ is to
investigate what happens when one inserts new knots into a given knot
sequence. The essential idea of the present paper is also "inserting new
knots" and '"inserting one new knot each time." In [5[. the authors develop

more properties of discrete splines. Lemmas I and 3 and parts of Lemmas 4
and 5 of this paper overlap with 151. However. 15\ is based on the recurrence
formula. while my Theorem 1 docs not need the recurrence formula though
the proof for the recurrence formula (Lemma 3) is more straightforward in
my opinion. In 171. the authors give the shortest way to prove the variation
diminishing property of B-spline approximation by using a geometric obser
vation. Their methods can be easily carried but to prove that the associated
discrete spline collocation matrix is sign regular. but it seems hard to
determine which minor is really positive along this way. In the present paper.
by the composition formula (Lemma 2) and the Cauchy-Binet formula. Vie

arc able to obtain the exact criterion for the positivity of a given minor. I
believe that the determination of such positivity is significant and expect that
Theorem 1 will play a role in discrete spline interpolation. discrete
minimization and other related topics.
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